Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241008.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241008-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241008.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241008.tar.gz
Algorithm Hash digest
SHA256 7fe2e55cfe63774790f7ce9a5abfa52927c7834a99d43a8ae55429e5360bbb8d
MD5 b2b445b58a9682f2f4ad8190021eabe1
BLAKE2b-256 ede2b03789e2adba07fe09af7c90a86e4c189b9dbc2b2c5b79fad6111651c189

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241008-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241008-py3-none-any.whl
Algorithm Hash digest
SHA256 1aef05575dac5cbd353d05d1a9022835c7ac8b4fccf87c803fe8700574764da4
MD5 783a4b2a0adec09d699cec8c154582c2
BLAKE2b-256 0282b8001bddd32dab821a83fecb8e46cb078b76bac2cb172800f389c0adba62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page