Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241009.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241009-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241009.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241009.tar.gz
Algorithm Hash digest
SHA256 0d1110ea5dd7d0d390aced9daeeb3848c8624f5db1b15c41ff1bcf6102567019
MD5 b491f13db210c7b8088a216a0bcf2db2
BLAKE2b-256 d7d3b556c1a7fa8b1b833a0b3919eba247eb60a936e99fe4b269a6ba6418a4ac

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241009-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241009-py3-none-any.whl
Algorithm Hash digest
SHA256 6b0e67e1e87b6864638a4d02008071256cb6960837cb772b104f0ee95fa579a6
MD5 2bcd5b7257b2723a079d20d158b74d50
BLAKE2b-256 16792cd03bdc2635c562e1fa57bc098156d5ea2b655a30964dac558bd389086b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page