Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241010.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241010-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241010.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241010.tar.gz
Algorithm Hash digest
SHA256 6d4fc68c6687752df690ba43a4bcc0befb33167bb605e2e2111f918dae589fdb
MD5 b62c6a70627b673dec3a89496e496617
BLAKE2b-256 a77c9d2cd17ad4b48f25368816064e1f87a10f40a742a8129cb849ddc56c40c1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241010-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241010-py3-none-any.whl
Algorithm Hash digest
SHA256 a46290d9a2849e57d75dfa6688e86d9b5b9bc8ea41dae81438857884502ae874
MD5 042c3fa6d4df69aea44245db1d8328fc
BLAKE2b-256 0f896aa3d756924ec7ef9de300c75099f5df3c5bde23fb766fc2fa99d1b70be9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page