Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241011.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241011-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241011.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241011.tar.gz
Algorithm Hash digest
SHA256 4470d0aca6cb395641ccf6c74de9ce60ed5a0d6b5fdd8ddb56c5f25999f2330c
MD5 b8e41684f5e97d9d23adc1fdd8cd9ceb
BLAKE2b-256 8b7792cb1f3bac8d6375316f6e3b786a619537beed3f6721dac9c7d85a183024

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241011-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241011-py3-none-any.whl
Algorithm Hash digest
SHA256 e464f7e640c5c3338f4cc42890159686e01b00320a04106087833ae8c569b044
MD5 7353f5e065df147ad00dbfab7df15bd4
BLAKE2b-256 e7171c2c8066a73235822c93eba9ff49b042dc8d798b92ebc9f279f9a018fa50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page