Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241012.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241012-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241012.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241012.tar.gz
Algorithm Hash digest
SHA256 a3d4ae9d50f4bcba0ec65366daeb192726a116427c3289192dc3becb619856f0
MD5 a73af3da3e431fce1a31eae1f764a643
BLAKE2b-256 f173226a3b46bed2547a7dcd4dd7e0f91c06b77c74a39b3c1ec88b5de558b218

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241012-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241012-py3-none-any.whl
Algorithm Hash digest
SHA256 4ea915f08b7dabcfca1aff46b90cf1049a36aa6b56c147a18f9c65bc940a537e
MD5 9df656c36c00a77fee04ebd41695c8ec
BLAKE2b-256 56e8f3166b76ecabc6493c80cc9a2b6fac32c561da69ba1dacb1d6e9a70edab0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page