Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241013.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241013-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241013.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241013.tar.gz
Algorithm Hash digest
SHA256 10f716fd10ec8a5096e9cb7ac3a4f43b007ee2bc79d1c0081bcc8f5722ae1843
MD5 faf9b3c070430bac7db184b81d0f9ecb
BLAKE2b-256 26ba4e1af395bedac5d395be7734f22d49f493624e7bf47cd6270e721baf2edd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241013-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241013-py3-none-any.whl
Algorithm Hash digest
SHA256 497ec221c78b11dea8fff8b6698d3f96bca95012a82b392d982e58eef2904335
MD5 0b168da42fdb219889ce716c40814c61
BLAKE2b-256 f13d6fa2f0116bcf41e1d3348972ca95c653ba96d46db9704fcc8a770c74c133

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page