Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241014.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241014-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241014.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241014.tar.gz
Algorithm Hash digest
SHA256 dba7976b10cafd8f3554312d00a6f2a8b0d94242ee7be77f8651d79121e951cb
MD5 e4bc7f649c52a25c434a31278928075d
BLAKE2b-256 59291fbc3ed280c2f3bc9701b4930e0288c93b4238138b805f98c6fcd4869007

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241014-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241014-py3-none-any.whl
Algorithm Hash digest
SHA256 5a9ce1ebd1af65bfee45910e0c187913f794ddebc0d319e80e63c9bd7f14a60f
MD5 646116b3799c22d9a1d26e347ac4ccc7
BLAKE2b-256 f699e4d9224517a621da0c1bd153ca03ca472e777b04be66bf4682aff5cf38a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page