Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241016.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241016-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241016.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241016.tar.gz
Algorithm Hash digest
SHA256 985b96a97f066dd161a574f23284cfdc6d4a488ec0b3fe578a551cc0fb4fa7bf
MD5 b6746b5dc823050e1034539371962faa
BLAKE2b-256 ab4c131610b2d654e19430b268782594fd02efa671c269f6a7330f552a115fd4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241016-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241016-py3-none-any.whl
Algorithm Hash digest
SHA256 603d2b7a9bd728d0e18f5d7c2444f2e513ac3543cb5273c1b4c5f42f6f2de12f
MD5 7d7bac8c27ce70dd26d11f01f6c70165
BLAKE2b-256 2f260978b92abd210929f9d6fe9b43f4525546b499b3b5b60c8d1fe48dcf38fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page