Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241017.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241017-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241017.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241017.tar.gz
Algorithm Hash digest
SHA256 d1fa2af6b58958d3c5dc18c9d8c58e0e8c753d56398fffe54514fab5248f7185
MD5 77176ef559c7b1c6f3cb1dbf29a85649
BLAKE2b-256 b150c81c65bda2e170b0877221a3c2d262cdc8a07e9d09bf83e17bb293ec389e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241017-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241017-py3-none-any.whl
Algorithm Hash digest
SHA256 81565c8a8413ea1ed99cb7c916d83878ebc9ed7f00feebe1d7880383ac313997
MD5 48314bfb9f40248a3cd4fe748c7ffd6a
BLAKE2b-256 f5fceff71a44d40d6f6261e24dfb926c5f1c9e9d854c0dbadaf76118c14f3aed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page