Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241019.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241019-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241019.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241019.tar.gz
Algorithm Hash digest
SHA256 05b916521adf58ebabea4e6a8f07f91ff46006466599ad5ca299419a80bab6a3
MD5 9191fef66b5ca77b1b64644ba1217e6f
BLAKE2b-256 6a457efdcfd8d52ebc6b3516f5a9c00b6454f0245827a72ccde4e404e2892d6e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241019-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241019-py3-none-any.whl
Algorithm Hash digest
SHA256 d185fab3495f328eddaacd11ccd0e9b3c06813be9cc5490d97dde2196e5d69ea
MD5 742c017016d6c8f3b8d09f038f90daed
BLAKE2b-256 92aba426c0dfce002a3f7f484df97d4cd58500024b536147c9da30ab0d9bf95b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page