Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241020.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241020-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241020.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241020.tar.gz
Algorithm Hash digest
SHA256 c6bc912feaa700b93ce8e1a34a060544a2791cd17568f5017b32cb576e1011a0
MD5 d9a6c89fbce05491ca1320b7795c651b
BLAKE2b-256 bcb98140b6e8e91bc4423a27d0cbb310601d1f8f6b291ccd1576a88a032863a5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241020-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241020-py3-none-any.whl
Algorithm Hash digest
SHA256 e8d461f20eb2771a1d8bc1645d88182b42596293ed93f4ecee747c78b017b450
MD5 1c0efaad0d4ec71e159e73176ff9d153
BLAKE2b-256 6668d9eeb85e54812e556519d4fe91a5c028ec78e8e67b088910270d44158816

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page