Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241021.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241021-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241021.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241021.tar.gz
Algorithm Hash digest
SHA256 f156358061735f8f37a690a268766a76b6cf84dac36bdbfb63411604f0fec4da
MD5 3e525a94cfef1b087723933ca4e2760c
BLAKE2b-256 53427383324fea6b9f49ae1b27f9aef6da3ec28393fad2931efcf461614e195c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241021-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241021-py3-none-any.whl
Algorithm Hash digest
SHA256 858de94e47d59637f9d1ed8c187a3a6708e4936362efd1a6b099cc7ad63179de
MD5 df3ffe83d26f6a74bc6a6136daf83aed
BLAKE2b-256 05e5f25f6c870301c9353d6a215a17bd86e0df02216769ca0299c801349cdac6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page