Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241022.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241022-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241022.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241022.tar.gz
Algorithm Hash digest
SHA256 0b7e425c58c92be35088797182f01c62c11af4f8af8922773babaa4b5bf53912
MD5 0c4f29fcf5a2b7633bcb421f559745d8
BLAKE2b-256 e06e486e557580feca00871bc75c88b0f938ba14936e0b2509effbbf6b13f6f0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241022-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241022-py3-none-any.whl
Algorithm Hash digest
SHA256 a8c2dc8e7ffc9980c6d55c0668197e1da59c53a18a4c9cb23b037874166fbaed
MD5 240f90f6e2b4e37620ffc3ebf33e1109
BLAKE2b-256 9ee3477cf12a324691248d523533bed7dde28ef20f1bff508b2c5f62a3bb0de7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page