Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241023.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241023-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241023.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241023.tar.gz
Algorithm Hash digest
SHA256 1c3210d14899fe841cb796e0ab05ae5925c0eb65756f16150007d291e8f99087
MD5 288a227db323f2f63f70ec811c194787
BLAKE2b-256 9582a586863ccec28a4fd8a8763889785e83726f5130e791aeef2c0f8a3e3da7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241023-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241023-py3-none-any.whl
Algorithm Hash digest
SHA256 d13a2458d627ec5fba5e156afa8011526bfad81c686d778dff008ed01a5729e0
MD5 fb27a6ea6e102e13ddbf9ed2f2d7f55c
BLAKE2b-256 3fc7d4e3c586d2746c87724266527c43f54ee40a7ce29fff3b0472b342de5606

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page