Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241024.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241024-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241024.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241024.tar.gz
Algorithm Hash digest
SHA256 56e9f686b2fbbae2febcf3634cc75a7725c84d414962394ce80547d331bbb777
MD5 d093ddc25c8279dba370deb8f5f42a44
BLAKE2b-256 6a78768c668148e4c6dfdd63ba20ae7540d15843b70826f1f6e29dba120e183e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241024-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241024-py3-none-any.whl
Algorithm Hash digest
SHA256 f1b3f1ad6527c40975a433e70ef4180544d488f8594a25ea7ee11b9b87046760
MD5 8459db49ec74f7a205260e79474334ed
BLAKE2b-256 31196334c9c7a0f0f520ce6f8c2c42caf5ea007cc7a4907746f5591490a0828e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page