Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241025.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241025-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241025.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241025.tar.gz
Algorithm Hash digest
SHA256 f550afac95c65fd2a73e3423f08ef340cab11ee92521498802b99cef6a6abdd9
MD5 f6211fa372523cdb51c35390921d2bb6
BLAKE2b-256 6e7e37d5707ff883d40d9fca4695e6edbe1bf2054cade6f48c9b487771858726

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241025-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241025-py3-none-any.whl
Algorithm Hash digest
SHA256 64acf2d18f1ee339581b44883948c9ec471062f1dc76ed830e403fa12b56ccb9
MD5 a001e11f90e31f5ef5b8bdfa2dcb4e76
BLAKE2b-256 f0c6afd048244b6e67efa63b514be68928b7085966ec98e07265cef8003847ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page