Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241026.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241026-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241026.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241026.tar.gz
Algorithm Hash digest
SHA256 4a84ee61285e23fd587c0a28142947c8c98bc62ebfd6d1e7a0651dba552abe92
MD5 e34cf203b08a830e094251c54ccd434d
BLAKE2b-256 4ed17877e961cf3edc2fd2ff7fb3dc742cf710d832359018b6e0c3c3521deae2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241026-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241026-py3-none-any.whl
Algorithm Hash digest
SHA256 764154cb4864a5aa616f68923b6a41c43f141c85fe2523eda92f8e7e70ba162a
MD5 58f3c48dc3d0dc38a88c6192e42f94f8
BLAKE2b-256 febca69b1ff2c337e19c607412bad6a65e7bd723bc485b50ccfd0aac58dba09a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page