Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241027.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241027-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241027.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241027.tar.gz
Algorithm Hash digest
SHA256 88c0d8c6f432a64b4fd1e940b635d1b6f7993d7db9c7ce8f3c92ec6b8f048179
MD5 b4245f514f04f11d20c91691e5868159
BLAKE2b-256 31c2bbcc6fa164197446ccd0ca3633e2b272c2fe612aadd3a6501c6957db8397

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241027-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241027-py3-none-any.whl
Algorithm Hash digest
SHA256 4972688a7296e383b41357609b6887f73d24628e1f81dcbf9ccee40d1dca7153
MD5 22f25e119acb6faf1e72157c1dc42d42
BLAKE2b-256 43671d57407ac9e9c240a65e11cbd0a1faec549e8996933f0c8fe91855a96604

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page