Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241028.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241028-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241028.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241028.tar.gz
Algorithm Hash digest
SHA256 db8fb22592bc6aae671c4a688fece9c29eadf8d41cdfa7cc1030ba3f3501778f
MD5 d166818461b91488502ec5715064448b
BLAKE2b-256 87cc6b5cc47c164d8feac8d1f0d531372e707e5c7dd904f11531f5b23e34be84

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241028-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241028-py3-none-any.whl
Algorithm Hash digest
SHA256 193f59b7b011a2dd9f247965173689ae405503df13559ba6eb5dd5db1beab336
MD5 2fa0873445c99675389735b477d8817e
BLAKE2b-256 6e46a0ffd02dc8ce7a8120a30b0ebd7808fcd7ce4f80335e1747bbbb44958595

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page