Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241029.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241029-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241029.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241029.tar.gz
Algorithm Hash digest
SHA256 e01698bc9dcd391a95419df1764a54b781d07eb7db3eec4da9b6723a9d0d7dce
MD5 984e5883c24d3d76fb07cf18826fddac
BLAKE2b-256 f740334c9546354854da140bb31eb1b8c96531ca0b4272116c325c8f6570486b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241029-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241029-py3-none-any.whl
Algorithm Hash digest
SHA256 f457a261ab4458a7747ee78adb15841e1ef01b153c7e1e2a40c2cd35d2552918
MD5 4ed2de743ca2373d976153281430f3ca
BLAKE2b-256 9c1b5e0e51f5c4403b3faefa5d40b3691e29901f21112189582a7ee7638b539d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page