Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241030.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241030-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241030.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241030.tar.gz
Algorithm Hash digest
SHA256 66f2fababa4f82204a7656b9c58b5821eb28c9920a069e67fc7567e468075154
MD5 2f4c77117b66250b7ade5f417ba51ebd
BLAKE2b-256 a9118e25aaa4d990e8de901efbcb60e984421758410fead5c37893f298804823

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241030-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241030-py3-none-any.whl
Algorithm Hash digest
SHA256 a67d5e40551ac286ad38741cf97fd462631e2e0a1b0d17419c68310b2cb2e345
MD5 336a9edacbfc361ae18d487bc07313c4
BLAKE2b-256 07506e6e2e14fbc2be224dba41193fa07e32190a58ba7604a1068b3ecc289b0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page