Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241031.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241031-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241031.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241031.tar.gz
Algorithm Hash digest
SHA256 0331817072c967fe51e7706166514648112ab3319fb591bec023352675c68fac
MD5 96ccee17b0d673615d673d2d9aa5ae85
BLAKE2b-256 fc91dc3446014bb69c04f06d0285deedce29ab5670c0fa0d99a87f78e128205e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241031-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241031-py3-none-any.whl
Algorithm Hash digest
SHA256 d79ce0a6b86c37662f6cfacbaa75fe6030dad9d7b2f019d7865901e2b0aea5a6
MD5 7974a45f59ad0c89ebb1ff1bfec60fae
BLAKE2b-256 2f4c1eb96aa06f72e7d813113d69e853489452b58acd0addf5fefa2debd75a11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page