Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241101.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241101-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241101.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241101.tar.gz
Algorithm Hash digest
SHA256 4a2f042ea186874259e1987a9593e1d56d1dda634b840822184ae93e8274ba0c
MD5 d15c703e6b6b69cfe42a1fabc342485c
BLAKE2b-256 4ceae02282481ac953d2ff194ae775a0d8787fa59aaf1a819a6e4412f3019ba1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241101-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241101-py3-none-any.whl
Algorithm Hash digest
SHA256 12200fa1325749a02b4a60222be69f882c5a509dd3392c7a636fc32fc02d572e
MD5 1e64b298f465f5dc89d296d3a1b39737
BLAKE2b-256 32d9a104222cea712f4f6bf3fd148569f61e30713b8bff07b99c685c7e4dd01d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page