Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241102.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241102-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241102.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241102.tar.gz
Algorithm Hash digest
SHA256 3f7f4b8abfb58463e68f3d531b037561b2fc0455092eb27f124a4f7399b449b2
MD5 9c6f2b5fe522cc715fe8efd77094621b
BLAKE2b-256 c2cdd133151459c11acee96cb447911db77b34052e973413da5eaf33131e02a1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241102-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241102-py3-none-any.whl
Algorithm Hash digest
SHA256 c656f7b56db48c22135d8b8690491a3fa58b7e5a1968bd51b67b327dfd627add
MD5 ec625c3b410926325dec02efdbd7dda1
BLAKE2b-256 1cff0161b63a86ab958cd132c33e9e97517386b9c568ef854d1c9f632a5c753f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page