Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241103.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241103-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241103.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241103.tar.gz
Algorithm Hash digest
SHA256 45e79f110cb786c6d6e1124b466b339b65327f4a25973bcf456b7e63d7dcf583
MD5 8e5bc4b63f168fbb08ef7440e8069f6a
BLAKE2b-256 7978a4fd8116348dcc73a73313d3692b73f4916609d366680f034ffa782092e0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241103-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241103-py3-none-any.whl
Algorithm Hash digest
SHA256 c71579bd37cad73eb76ea5eb42729e9ee918bf5b76bcaba853dde392f0ecf709
MD5 8354a5172288409982b5ec7af1e80f1f
BLAKE2b-256 f116e88cb707ab29fb1f9f42ed495721bd008e0bb445f8c4897aebaed5054383

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page