Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241104.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241104-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241104.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241104.tar.gz
Algorithm Hash digest
SHA256 282a882f96b2f8d1a11d4088e296a2a5eb46609f00f3bea19a2861ab75eeb2b1
MD5 4b4f3803d9bb8daae9d8ffd959bf3005
BLAKE2b-256 9b46c38d89a2b63ceb801e3234e0b25dd0256e1ba4f39322019223fc49f25928

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241104-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241104-py3-none-any.whl
Algorithm Hash digest
SHA256 edb69164ced045be2c08771e03568de777e30617d552dde5d4b9d746011c22e3
MD5 294d1730a6f633ee8780aa633aab6d5f
BLAKE2b-256 a6a26f84d7ba502655aca251ebd53a8186bcbca6b9644e8c9787937fae8f63ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page