Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241105.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241105-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241105.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241105.tar.gz
Algorithm Hash digest
SHA256 368fa14fd92fc2fedd686881c60b77d5cc6bd24dcae1368a7607c4451edacd30
MD5 64eb6718b1d498930f9a4c5d1a5d857a
BLAKE2b-256 97efc893bfa9f833913692b2ef22c1fa9f8bad82307e4bfe61507cbfcff567fb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241105-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241105-py3-none-any.whl
Algorithm Hash digest
SHA256 a41e02453158386a92180f7182f586dcb1fbe00c96d97110709c905fce978fa9
MD5 31e9432bc73a7eb360dc1838a0a6dcbb
BLAKE2b-256 6f4b551c3f2f6bd4d39f38deda5c87cfc6affeae4c3d346ef8a2779821c7f048

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page