Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241106.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241106-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241106.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241106.tar.gz
Algorithm Hash digest
SHA256 94433d95e655fd18ccd5cfac9f6e5607a97c4bc328ebfeb0902b48246bbe23fb
MD5 41f1bf688c176e2ece9561422c653688
BLAKE2b-256 f107d47194acb45d66be984e3f50743bcca610a57fdeb1f2ae29b32cff5fb336

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241106-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241106-py3-none-any.whl
Algorithm Hash digest
SHA256 a459eaf5130d0f7ce9a7594db1e83acc96428d4d8162eb16145697d536e35107
MD5 315535964a8509b80459db9b70e156bb
BLAKE2b-256 4273466357ab502866fda8de21aa1a2cf7e204a38430257757749b835e42619a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page