Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241107.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241107-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241107.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241107.tar.gz
Algorithm Hash digest
SHA256 4d85ee775aa10771df7cba513835c10c8b716e88a1d7fbdbe527668f9d833a01
MD5 615b42bf7ed77a45a37022a6ad821a46
BLAKE2b-256 db6dc3d255d2f644a2d2604d98a73ac7bf31dc27636ec512363b4d622adb52a0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241107-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241107-py3-none-any.whl
Algorithm Hash digest
SHA256 a577836a5140da897253caec48f3df554ec3674d2de106eac45e33cf85d1db3b
MD5 8dd4e02bfcaf1e8a544e357db9eefa32
BLAKE2b-256 6eb80f350e8feadef38728351df33dc90578a0e507fc1fedffc08700d2540a87

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page