Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241108.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241108-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241108.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241108.tar.gz
Algorithm Hash digest
SHA256 aa479911d5bea3def3830cf6c6ed67da72a00bfac0c58860d7a516a58655981a
MD5 c91d0a6bde96d839fc5de855bb166284
BLAKE2b-256 c6a174d172bebb0000c0d9125ff4e9933e160a1adddbc419e783660581ed6604

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241108-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241108-py3-none-any.whl
Algorithm Hash digest
SHA256 00ee4eab4d19e02aaee1191ead3f5a0076a6d637ec958d771edd8b51f811dad1
MD5 a045cb6bc7ffecd4a22a7c33afda3dea
BLAKE2b-256 e3ec338a4d6eaf38ba36584675810d7565f981d46e4adeb38c6213aef4651f00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page