Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241109.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241109-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241109.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241109.tar.gz
Algorithm Hash digest
SHA256 f1d2f14e85ac06e0d62d69b8c1cc9d12452498187e725a3c3144f6b49c4d4e46
MD5 fd623f36555163fd1d9cc9f746c2b872
BLAKE2b-256 213e4ae54df19bbf847d7458daaae112ace9202a0f26665123175553addbe8f4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241109-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241109-py3-none-any.whl
Algorithm Hash digest
SHA256 2426e61d42d464c40cca678b3b2ab0525f724b7dd29f2d36627dd843b41fb677
MD5 35b8ec6af29359f7181e4226babc0f71
BLAKE2b-256 1f2b7334cd45696ada6e71d838aa6f3aa2085eea2544a30732de314ea9e0e3d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page