Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241110.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241110-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241110.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241110.tar.gz
Algorithm Hash digest
SHA256 3809a26689e54ec6aa7f5b3c1c884073edbdfbed473e5e1f09b1890f533d033f
MD5 3946c7d5865738339e2b5ac56a102575
BLAKE2b-256 0541df07d4b9f6187b9d92faa344d5f1e6f05c0a71ce7d201d983517f3e0f792

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241110-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241110-py3-none-any.whl
Algorithm Hash digest
SHA256 fc800b448ba02afdf81c5eda0251dd9f2c7a6c562b27d4c1b9d0737f2bbf4de6
MD5 754792fc43fd28844f63bc33e7642c7d
BLAKE2b-256 0ce3de8bb625b67e4efb005ef777274e7773e444578ebfe3ab60cb7bab1c4bde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page