Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241111.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241111-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241111.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241111.tar.gz
Algorithm Hash digest
SHA256 3c74f29a131094be229f153b6a3d76f896cab5d55d553dfbaeba3c72a9d4d82b
MD5 559445f35de0a913d61f312d41356a8e
BLAKE2b-256 2aab1d19e08ce7c51eba415b240ee05bce12a8ad4559566e13d0057c0e8b9448

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241111-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241111-py3-none-any.whl
Algorithm Hash digest
SHA256 7aee6063e3761aab9373b47334d123a4d4fb5131cef0dbea3f7174b3b9d0cc06
MD5 f2ca38a2a05c92b7c242edcfba772777
BLAKE2b-256 10846b9ebf1360a234fce4ac2f0366f6b0ab8f8223eaf555afebafecf9538b49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page