Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241112.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241112-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241112.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241112.tar.gz
Algorithm Hash digest
SHA256 bf0cea25c54211f7f24833ef9b4bb321d36af495886ceab8971de33e136ae9ab
MD5 2e8160fc0193da84c2ae299b03a65831
BLAKE2b-256 cfeeb377208eb7e4eb714c0642e2d95506b5906de87c0f6055b4493122050555

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241112-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241112-py3-none-any.whl
Algorithm Hash digest
SHA256 caa1738c350cc06104e3e2d14cfc2e1ec39b82801906811839f81f711376f22a
MD5 217faa1f71635c7838096b6716e381b8
BLAKE2b-256 40c4b31318da0eba086012feb9cf462dffd15a8c1ddfbd82ec83cb625c4521be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page