Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241113.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241113-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241113.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241113.tar.gz
Algorithm Hash digest
SHA256 27619b1128caa32b32436bf59807f1309f5c15a4b854b1e1cc6b3b1ff2adc1ef
MD5 b58aeeac3e8d1076fe619b9ca62bcac8
BLAKE2b-256 00e905cf06f471c71d2bd66111c8d53928fbbc4ebc544b4cdf81e0e8815aee1a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241113-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241113-py3-none-any.whl
Algorithm Hash digest
SHA256 93c9e8b52c0db1d50bec84daa5b1d37931222a1a0762ef26ef3da22732c831c8
MD5 93f3778ddea8d2874dc956c718914e06
BLAKE2b-256 d1c0154b26835c4f546d8eefbf78d76da74697b7959b69b59da3798b09177ff7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page