Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241114.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241114-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241114.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241114.tar.gz
Algorithm Hash digest
SHA256 ca3ad96e0dd71943ad69c481c57d5c9f69ce7c7f8ea35fd38af37e13babc519d
MD5 0ad3a5e5c68834811ec8a103331f15b6
BLAKE2b-256 a5fe76c1deff9c8a6ca46abbdb6af967dca2a340a0f77b88490de01dd9a70c75

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241114-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241114-py3-none-any.whl
Algorithm Hash digest
SHA256 c1a30e0bac872e1abe82ffad89ba3d9ceff3e64f42dd2ee42f47e31ab10c65cd
MD5 3fa0075868193bad5930ddae1ff5e354
BLAKE2b-256 6b2e1d0a22870aa9e36c4ea8417a6b3ff96739cf408f82b08952a92c517516ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page