Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241115.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241115-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241115.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241115.tar.gz
Algorithm Hash digest
SHA256 8ca2757f1b6352d7f1157ab5ccb095a93e5031e3a9fc9e739f75020417d4bc1d
MD5 d257f7360cd9551027f2b756bc3001ac
BLAKE2b-256 17c5fd9988be2834a2c5c98646bbeabeb1d37d7c8d2ac1d13777d0da986b1fb0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241115-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241115-py3-none-any.whl
Algorithm Hash digest
SHA256 fe12776f58f570d515821d49b03bac0e3bf88a32501b113094a5f6da85eb4ff1
MD5 e0e011ae5e8b863425c5af6a872485f8
BLAKE2b-256 853cabbd087ac0de626bc335e4f96c5457898b4b331ea8519ec9e24cf0111dad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page