Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241116.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241116-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241116.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241116.tar.gz
Algorithm Hash digest
SHA256 9243399f4993f169047dce809ae229457b4f503da5e6d563c0372d26ff34a220
MD5 597d0ef19f360284e191db3f226d0408
BLAKE2b-256 e905e8657caf2968a9d63aebfbdbc709ca504b86741d1983f7bab8a891913ad4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241116-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241116-py3-none-any.whl
Algorithm Hash digest
SHA256 c1726fce36c75e49015c613127dc2d65974d2d725d4ee4d0f46218f11774e43a
MD5 8c7128bc8ee793ada1ac1da5898e21d7
BLAKE2b-256 cc77333ded1223c47086201d3e6b9f0d91e99a22064841bfe87dd9fb33095917

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page