Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241117.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241117-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241117.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241117.tar.gz
Algorithm Hash digest
SHA256 301486c974a4da28e38e145bf6618bf38b71fff7346c372294e9c17860c4f829
MD5 386a70ccbb169b234a5a3436d67c674d
BLAKE2b-256 3d84511e70f2a62e196ed1d82b0b94c028c412e746a3898d5c297aebfc8153c6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241117-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241117-py3-none-any.whl
Algorithm Hash digest
SHA256 717ae7373ccb69c19904955805edfb56642b02aa3cb9bf58ee27e1764ac753f6
MD5 f757ab71aaa036e49bd3e24571206b0a
BLAKE2b-256 71337ec7cc3ef8a0c9a01aa958c21160200492c8b6e85e84c8649864917b1911

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page