Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241118.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241118-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241118.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241118.tar.gz
Algorithm Hash digest
SHA256 41cc9e5cb76c6285332ac7d1b9f9ac346d7188800c0d1f10fd95ac4cc3885c54
MD5 eacce932362a71b42c2efa00bad38ac8
BLAKE2b-256 78be58dca5b37ae5c1aeabf6c17173c79edeb47d68f9ac3e3a84e10d0943e5b0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241118-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241118-py3-none-any.whl
Algorithm Hash digest
SHA256 c2e5c64199986acf11f2e9a93d4a91edb8511257e05df732fc7352102ccb1e74
MD5 470169d8be6e955353dcba01d6060bbe
BLAKE2b-256 71433814c22b30e0155ba4dd8ad22ca5f1d7e2d400b5cf6925db0138a5a2c0a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page