Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241119.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241119-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241119.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241119.tar.gz
Algorithm Hash digest
SHA256 eb0c812a38fbc69feaf9e2734195347a109a187e185dc4592dd332100fe7f514
MD5 7666bfc73518fb6dece267e0a05cdd23
BLAKE2b-256 2eb8977455605a490163e420d2d92e2d9917dbfe5e5f5f3ab76c39e7e49925aa

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241119-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241119-py3-none-any.whl
Algorithm Hash digest
SHA256 ed361738d93c3bd3aaa0b2ad3cee9b5717e515357c5e61d40f08c4bcf44a8cba
MD5 dc8e2bc184bdc5e2017ec32817d15e57
BLAKE2b-256 9aa89c8c32d12b768990d52266ca00d99dd5621aa573c30a31e3456d4c9a3593

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page