Skip to main content

AutoML for Image, Text, and Tabular Data

Project description

AutoML for Image, Text, Time Series, and Tabular Data

Latest Release Continuous Integration Platform Tests Broken Link Checker Python Versions GitHub license Downloads Twitter

Install Instructions | Documentation (Stable | Latest)

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon  # autogluon==0.8.2

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
MultiModalPredictor Quick Start API
TimeSeriesPredictor Quick Start API

Resources

See the AutoGluon Website for documentation and instructions on:

Refer to the AutoGluon Roadmap for details on upcoming features and releases.

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:

Fakoor, Rasool, et al. "Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation." Advances in Neural Information Processing Systems 33 (2020).

BibTeX entry:

@article{agtabulardistill,
  title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
  author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:

Shi, Xingjian, et al. "Multimodal AutoML on Structured Tables with Text Fields." 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.

BibTeX entry:

@inproceedings{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
  booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}

If you use AutoGluon's time series forecasting functionality in a scientific publication, please cite the following paper:

@inproceedings{agtimeseries,
  title={{AutoGluon-TimeSeries}: {AutoML} for Probabilistic Time Series Forecasting},
  author={Shchur, Oleksandr and Turkmen, Caner and Erickson, Nick and Shen, Huibin and Shirkov, Alexander and Hu, Tony and Wang, Yuyang},
  booktitle={International Conference on Automated Machine Learning},
  year={2023}
}

AutoGluon for Hyperparameter Optimization

AutoGluon's state-of-the-art tools for hyperparameter optimization, such as ASHA, Hyperband, Bayesian Optimization and BOHB have moved to the stand-alone package syne-tune.

To learn more, checkout our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.common-0.8.3b20230910.tar.gz (52.1 kB view details)

Uploaded Source

Built Distribution

autogluon.common-0.8.3b20230910-py3-none-any.whl (60.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.common-0.8.3b20230910.tar.gz.

File metadata

File hashes

Hashes for autogluon.common-0.8.3b20230910.tar.gz
Algorithm Hash digest
SHA256 0f71f1ea2f9b1fad256372478a95fd73c1fe75d56986de5d36d57c8e9317696c
MD5 3194ba328bfa7b6cb1b7b300f0c5c4bc
BLAKE2b-256 0e9cb104a16054c5b6494011595f6f687f0439a29a54baca907eb1809fc1c9a3

See more details on using hashes here.

File details

Details for the file autogluon.common-0.8.3b20230910-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.common-0.8.3b20230910-py3-none-any.whl
Algorithm Hash digest
SHA256 e82e647f8f9427c8c1b7ac63f6754c1ff6052b07e0317abaf30071dcc98f954a
MD5 da393dcc72b837a05758a89452ef951a
BLAKE2b-256 38561e3ba9b3d3ca7d7602ccff51720addc0f21119252acd011a33f459f6a4d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page