Skip to main content

AutoML for Image, Text, and Tabular Data

Project description

AutoML for Image, Text, Time Series, and Tabular Data

Latest Release Conda Forge Python Versions Downloads GitHub license Discord Twitter Continuous Integration Platform Tests

Install Instructions | Documentation | Release Notes

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

💾 Installation

AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.

You can install AutoGluon with:

pip install autogluon

Visit our Installation Guide for detailed instructions, including GPU support, Conda installs, and optional dependencies.

:zap: Quickstart

Build accurate end-to-end ML models in just 3 lines of code!

from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label="class").fit("train.csv")
predictions = predictor.predict("test.csv")
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
MultiModalPredictor Quick Start API
TimeSeriesPredictor Quick Start API

:mag: Resources

Hands-on Tutorials / Talks

Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available here.

Title Format Location Date
:tv: AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code Tutorial AutoML Conf 2023 2023/09/12
:sound: AutoGluon: The Story Podcast The AutoML Podcast 2023/09/05
:tv: AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data Tutorial PyData Berlin 2023/06/20
:tv: Solving Complex ML Problems in a few Lines of Code with AutoGluon Tutorial PyData Seattle 2023/06/20
:tv: The AutoML Revolution Tutorial Fall AutoML School 2022 2022/10/18

Scientific Publications

Articles

Train/Deploy AutoGluon in the Cloud

:pencil: Citing AutoGluon

If you use AutoGluon in a scientific publication, please refer to our citation guide.

:wave: How to get involved

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

:classical_building: License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.common-1.0.1b20240314.tar.gz (54.4 kB view details)

Uploaded Source

Built Distribution

autogluon.common-1.0.1b20240314-py3-none-any.whl (64.5 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.common-1.0.1b20240314.tar.gz.

File metadata

File hashes

Hashes for autogluon.common-1.0.1b20240314.tar.gz
Algorithm Hash digest
SHA256 f71c7a5689ec8b99e05afe0c19a032c608742103fad7987cc8dbea7cc9b9d28f
MD5 0d55bc203bff1eadd212081118258880
BLAKE2b-256 77c976d94a6e9403cd36df9f94b9bbc3482036c5eff68ef4f41d946df63c8acb

See more details on using hashes here.

File details

Details for the file autogluon.common-1.0.1b20240314-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.common-1.0.1b20240314-py3-none-any.whl
Algorithm Hash digest
SHA256 e98e5b40434c27e65a97cbc5e787cc679937b32bab78e4b522d3127f2871159c
MD5 6bf2e2aa5b0087615d3aec68b9cd09b2
BLAKE2b-256 8f3f202351c32e13e4b23bff9fae6016d4590ff494079cdd1e93a8e2c84ba0b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page