Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPrediction), for all versions newer than v0.0.14. Documentation/tutorials under the old API may still be viewed for version 0.0.14 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.core-0.0.15b20201204.tar.gz (183.6 kB view details)

Uploaded Source

Built Distribution

autogluon.core-0.0.15b20201204-py3-none-any.whl (241.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.core-0.0.15b20201204.tar.gz.

File metadata

  • Download URL: autogluon.core-0.0.15b20201204.tar.gz
  • Upload date:
  • Size: 183.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.9

File hashes

Hashes for autogluon.core-0.0.15b20201204.tar.gz
Algorithm Hash digest
SHA256 690738736af66c78afd8e74a6c3eba8ba4cdb155b78dd3ba0e02c54f4521a11c
MD5 87fc59cbee2261f58e657ee453244e83
BLAKE2b-256 f6b0586fe3bf0fcddeca796ceab6000dc0a7b2db62d17a33283b9897319bec42

See more details on using hashes here.

File details

Details for the file autogluon.core-0.0.15b20201204-py3-none-any.whl.

File metadata

  • Download URL: autogluon.core-0.0.15b20201204-py3-none-any.whl
  • Upload date:
  • Size: 241.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.9

File hashes

Hashes for autogluon.core-0.0.15b20201204-py3-none-any.whl
Algorithm Hash digest
SHA256 8b43af2aebde07709440aa3823966ac78966ebe327634b7c9ce39de3f4eeb80f
MD5 7607c16d0ee4f8f15f5510f8cd99162b
BLAKE2b-256 2f45d09f8bbab5766123916414ffb04998b917150ddc692764f3e790a8290bdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page