Skip to main content

AutoML for Text, Image, and Tabular Data

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=60)  # Fit models for 60s
leaderboard = predictor.leaderboard(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.core-0.1.0b20210228.tar.gz (242.1 kB view details)

Uploaded Source

Built Distribution

autogluon.core-0.1.0b20210228-py3-none-any.whl (311.9 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.core-0.1.0b20210228.tar.gz.

File metadata

  • Download URL: autogluon.core-0.1.0b20210228.tar.gz
  • Upload date:
  • Size: 242.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.10

File hashes

Hashes for autogluon.core-0.1.0b20210228.tar.gz
Algorithm Hash digest
SHA256 b61d964b09bf62446f975c0f32c1f37da2f7805e9cf61f2ad52cb03d347c066b
MD5 fcdc952ec72299e3f9ed009748976f96
BLAKE2b-256 75e192ff1ca5671f51691c09d526ae4087b22ec6c028cf73c755267e145d8447

See more details on using hashes here.

File details

Details for the file autogluon.core-0.1.0b20210228-py3-none-any.whl.

File metadata

  • Download URL: autogluon.core-0.1.0b20210228-py3-none-any.whl
  • Upload date:
  • Size: 311.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.7.10

File hashes

Hashes for autogluon.core-0.1.0b20210228-py3-none-any.whl
Algorithm Hash digest
SHA256 5eca210d7eab68f4c2451116700a879235d86101c631d09b5abf7e89db99bca3
MD5 a2e6fe93cb4b3fe3bae4b36be823220a
BLAKE2b-256 9901c3a44e039391e5200512f13d96cd3a70772606b7ada0d7a9c1c80116accd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page