Skip to main content

AutoML for Image, Text, and Tabular Data

Project description

AutoML for Image, Text, Time Series, and Tabular Data

Latest Release Continuous Integration Platform Tests Python Versions GitHub license Downloads Twitter

Install Instructions | Documentation (Stable | Latest)

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon  # autogluon==0.7.0

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
MultiModalPredictor Quick Start API
TimeSeriesPredictor Quick Start API

Resources

See the AutoGluon Website for documentation and instructions on:

Refer to the AutoGluon Roadmap for details on upcoming features and releases.

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

If you are using AutoGluon Tabular's model distillation functionality, please cite the following paper:

Fakoor, Rasool, et al. "Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation." Advances in Neural Information Processing Systems 33 (2020).

BibTeX entry:

@article{agtabulardistill,
  title={Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation},
  author={Fakoor, Rasool and Mueller, Jonas W and Erickson, Nick and Chaudhari, Pratik and Smola, Alexander J},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

If you use AutoGluon's multimodal text+tabular functionality in a scientific publication, please cite the following paper:

Shi, Xingjian, et al. "Multimodal AutoML on Structured Tables with Text Fields." 8th ICML Workshop on Automated Machine Learning (AutoML). 2021.

BibTeX entry:

@inproceedings{agmultimodaltext,
  title={Multimodal AutoML on Structured Tables with Text Fields},
  author={Shi, Xingjian and Mueller, Jonas and Erickson, Nick and Li, Mu and Smola, Alex},
  booktitle={8th ICML Workshop on Automated Machine Learning (AutoML)},
  year={2021}
}

AutoGluon for Hyperparameter Optimization

AutoGluon's state-of-the-art tools for hyperparameter optimization, such as ASHA, Hyperband, Bayesian Optimization and BOHB have moved to the stand-alone package syne-tune.

To learn more, checkout our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.eda-0.7.0.tar.gz (46.0 kB view details)

Uploaded Source

Built Distribution

autogluon.eda-0.7.0-py3-none-any.whl (57.3 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.eda-0.7.0.tar.gz.

File metadata

  • Download URL: autogluon.eda-0.7.0.tar.gz
  • Upload date:
  • Size: 46.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for autogluon.eda-0.7.0.tar.gz
Algorithm Hash digest
SHA256 fbab33cd7eb1458a47b6bef8a1197564656d22ac4c2f25a41bc423952fe0c97a
MD5 d0fa23eeec958c2b99354a84041fa1c4
BLAKE2b-256 fbfd33a23e2e617841a8eb234575cee3db959fdec491d38712a372791a1351d9

See more details on using hashes here.

File details

Details for the file autogluon.eda-0.7.0-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.eda-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 14d732a637fd10e9d974e558d4caeb7415a32a127552ad334a01f34d591be1b9
MD5 8540e9037811656e116701d06f4853d5
BLAKE2b-256 e628051adae8e3f68757be8c3286477a5ce0e6a4119da9e27ba9b8aa597152ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page