Skip to main content

AutoML for Text, Image, and Tabular Data

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version GitHub license Downloads Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install -U pip
# python3 -m pip install -U setuptools wheel
# python3 -m pip install -U "mxnet<2.0.0"
# python3 -m pip install autogluon  # autogluon==0.2.0

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TextPredictor Quick Start API
ImagePredictor Quick Start API
ObjectDetector Quick Start API

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

AutoGluon includes an algorithm for constrained hyperparameter optimization. Check out our paper applying it to optimize model performance under fairness constraints: "Fair Bayesian Optimization", AIES (2021).

@article{fairbo,
  title={Fair Bayesian Optimization},
  author={Perrone, Valerio and Donini, Michele and Zafar, Bilal Muhammad and Schmucker, Robin and Kenthapadi, Krishnaram and Archambeau, Cédric},
  journal={AIES},
  year={2021}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.extra-0.2.1b20210622.tar.gz (21.9 kB view details)

Uploaded Source

Built Distribution

autogluon.extra-0.2.1b20210622-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.extra-0.2.1b20210622.tar.gz.

File metadata

  • Download URL: autogluon.extra-0.2.1b20210622.tar.gz
  • Upload date:
  • Size: 21.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for autogluon.extra-0.2.1b20210622.tar.gz
Algorithm Hash digest
SHA256 14efc03324b9cfa261402e90bace1b8730fa832e9ed3764416d33280cda89e60
MD5 08a39f2836c63cf968c7b09290d6dde8
BLAKE2b-256 ffb02572c56fb9e6c0d92c031b99917c05246ba7693d12b634939e51eee26e28

See more details on using hashes here.

File details

Details for the file autogluon.extra-0.2.1b20210622-py3-none-any.whl.

File metadata

  • Download URL: autogluon.extra-0.2.1b20210622-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.10

File hashes

Hashes for autogluon.extra-0.2.1b20210622-py3-none-any.whl
Algorithm Hash digest
SHA256 4d0a5893c9f35ce95b678a18cff0a8daa29881a2743a3e0189069877f9a6faf7
MD5 45eb1efffe02585b8c023c10b9bc51b9
BLAKE2b-256 978305ca56d7337f2d389e27450d6f26cfb89420589c780c11170079990a7477

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page