Skip to main content

AutoML for Text, Image, and Tabular Data

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version GitHub license Downloads Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install -U pip
# python3 -m pip install -U setuptools wheel
# python3 -m pip install -U "mxnet<2.0.0"
# python3 -m pip install autogluon  # autogluon==0.2.0

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=120)  # Fit models for 120s
leaderboard = predictor.leaderboard(test_data)
AutoGluon Task Quickstart API
TabularPredictor Quick Start API
TextPredictor Quick Start API
ImagePredictor Quick Start API
ObjectDetector Quick Start API

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

AutoGluon for Constrained Hyperparameter Optimization

AutoGluon includes an algorithm for constrained hyperparameter optimization. Check out our paper applying it to optimize model performance under fairness constraints: "Fair Bayesian Optimization", AIES (2021).

@article{fairbo,
  title={Fair Bayesian Optimization},
  author={Perrone, Valerio and Donini, Michele and Zafar, Bilal Muhammad and Schmucker, Robin and Kenthapadi, Krishnaram and Archambeau, Cédric},
  journal={AIES},
  year={2021}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.extra-0.2.1b20210726.tar.gz (22.0 kB view details)

Uploaded Source

Built Distribution

autogluon.extra-0.2.1b20210726-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.extra-0.2.1b20210726.tar.gz.

File metadata

  • Download URL: autogluon.extra-0.2.1b20210726.tar.gz
  • Upload date:
  • Size: 22.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for autogluon.extra-0.2.1b20210726.tar.gz
Algorithm Hash digest
SHA256 b1a9f6aec5d8f8050b6627dedf4b87763b6359188a06d7d837123c3d55849a0c
MD5 cb09739ebebcb8b50aa678a7bf4e8a32
BLAKE2b-256 c8c24ded5264a8f6e110319b88530f5baa8c81973c14c72a23c0ea473cdf5acd

See more details on using hashes here.

File details

Details for the file autogluon.extra-0.2.1b20210726-py3-none-any.whl.

File metadata

  • Download URL: autogluon.extra-0.2.1b20210726-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.7.11

File hashes

Hashes for autogluon.extra-0.2.1b20210726-py3-none-any.whl
Algorithm Hash digest
SHA256 d1398ae425d0b27bf3339be8267cb87aa2b1ada9255eec261b6bc2dc9f5eeeb9
MD5 70bdefe23f6bf0a1fe7b87c9cb457471
BLAKE2b-256 9447e61a7e5d350e61d21a077d03ef33a90857ed737a0a0b8bf498d7680d045c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page