Skip to main content

AutoML for Text, Image, and Tabular Data

Project description

AutoML for Text, Image, and Tabular Data

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on text, image, and tabular data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install --pre autogluon

from autogluon.tabular import TabularDataset, TabularPredictor
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = TabularPredictor(label='class').fit(train_data, time_limit=60)  # Fit models for 60s
leaderboard = predictor.leaderboard(test_data)

News

Announcement for previous users: The AutoGluon codebase has been modularized into namespace packages, which means you now only need those dependencies relevant to your prediction task of interest! For example, you can now work with tabular data without having to install dependencies required for AutoGluon's computer vision tasks (and vice versa). Unfortunately this improvement required a minor API change (eg. instead of from autogluon import TabularPrediction, you should now do: from autogluon.tabular import TabularPredictor), for all versions newer than v0.0.15. Documentation/tutorials under the old API may still be viewed for version 0.0.15 which is the last released version under the old API.

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.mxnet-0.1.0b20210225.tar.gz (29.2 kB view details)

Uploaded Source

Built Distribution

autogluon.mxnet-0.1.0b20210225-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.mxnet-0.1.0b20210225.tar.gz.

File metadata

  • Download URL: autogluon.mxnet-0.1.0b20210225.tar.gz
  • Upload date:
  • Size: 29.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.10

File hashes

Hashes for autogluon.mxnet-0.1.0b20210225.tar.gz
Algorithm Hash digest
SHA256 bd493923be6702d67a10d4b16fe32d8af0fce90f2943c39ba519d6e48062d834
MD5 f450191c6e5b167ada3403aaf8e14cf0
BLAKE2b-256 b30d2c984a0c56a99b1f18192560eeb79c12bb9d32af5e51e885303d01a558f8

See more details on using hashes here.

File details

Details for the file autogluon.mxnet-0.1.0b20210225-py3-none-any.whl.

File metadata

  • Download URL: autogluon.mxnet-0.1.0b20210225-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.10

File hashes

Hashes for autogluon.mxnet-0.1.0b20210225-py3-none-any.whl
Algorithm Hash digest
SHA256 5aaa0768498a9856567fc1ef315207ca65ec013bf9a02845f87628163c0f5fcf
MD5 63d4fb09ed519fe06a8e2b121a30c7cb
BLAKE2b-256 b98265f98f2615c65dc563d32699c57666252889def9bdaa2674df450d025843

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page