Skip to main content

AutoML Toolkit with MXNet Gluon

Project description

AutoML Toolkit for Deep Learning

Build Status Pypi Version Upload Python Package

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy deep learning models on tabular, image, and text data.

Example

# First install package from terminal:
# python3 -m pip install --upgrade pip
# python3 -m pip install --upgrade setuptools
# python3 -m pip install --upgrade "mxnet<2.0.0"
# python3 -m pip install autogluon

from autogluon.tabular import TabularPrediction as task
train_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv')
test_data = task.Dataset(file_path='https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv')
predictor = task.fit(train_data=train_data, label='class')
performance = predictor.evaluate(test_data)

Resources

See the AutoGluon Website for documentation and instructions on:

Scientific Publications

Articles

Hands-on Tutorials

Train/Deploy AutoGluon in the Cloud

Citing AutoGluon

If you use AutoGluon in a scientific publication, please cite the following paper:

Erickson, Nick, et al. "AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data." arXiv preprint arXiv:2003.06505 (2020).

BibTeX entry:

@article{agtabular,
  title={AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data},
  author={Erickson, Nick and Mueller, Jonas and Shirkov, Alexander and Zhang, Hang and Larroy, Pedro and Li, Mu and Smola, Alexander},
  journal={arXiv preprint arXiv:2003.06505},
  year={2020}
}

AutoGluon for Hyperparameter and Neural Architecture Search (HNAS)

AutoGluon also provides state-of-the-art tools for neural hyperparameter and architecture search, such as for example ASHA, Hyperband, Bayesian Optimization and BOHB. To get started, checkout the following resources

Also have a look at our paper "Model-based Asynchronous Hyperparameter and Neural Architecture Search" arXiv preprint arXiv:2003.10865 (2020).

@article{abohb,
  title={Model-based Asynchronous Hyperparameter and Neural Architecture Search},
  author={Klein, Aaron and Tiao, Louis and Lienart, Thibaut and Archambeau, Cedric and Seeger, Matthias},
  journal={arXiv preprint arXiv:2003.10865},
  year={2020}
}

License

This library is licensed under the Apache 2.0 License.

Contributing to AutoGluon

We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the Contributing Guide to get started.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.text-0.0.15b20201014.tar.gz (52.1 kB view details)

Uploaded Source

Built Distribution

autogluon.text-0.0.15b20201014-py3-none-any.whl (59.4 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.text-0.0.15b20201014.tar.gz.

File metadata

  • Download URL: autogluon.text-0.0.15b20201014.tar.gz
  • Upload date:
  • Size: 52.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.15b20201014.tar.gz
Algorithm Hash digest
SHA256 a26fa327141bb411dfbc8b984ec70a2f872beabde1defa59d6dbda781b29534e
MD5 649d1e635438da5dbaa8bbe170f610a4
BLAKE2b-256 c51f7a136aca55babccb441e062536339fdf6e8c500f296a0c0236b9e569c471

See more details on using hashes here.

File details

Details for the file autogluon.text-0.0.15b20201014-py3-none-any.whl.

File metadata

  • Download URL: autogluon.text-0.0.15b20201014-py3-none-any.whl
  • Upload date:
  • Size: 59.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for autogluon.text-0.0.15b20201014-py3-none-any.whl
Algorithm Hash digest
SHA256 40df45bcf1998641e116058c277cb719136492baec22c4fc5cd89b6040d16510
MD5 ff3e26acf3185ea82df8a21a1867c083
BLAKE2b-256 62fdf38006e260d11f576f24c408c6050e2a339ebf4f2487b1f4ced587d191f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page